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Wait a long time
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Very important to scrutinize the validity of this statement 
for HEP and ask two important questions
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Year

a better computer

1. Does such a computational 
problem(s) exist, and will it alter 
the direction of HEP?

2. Do we really know that a 
quantum computer performs this 
calculation exponentially faster?

1. Have identified many such problems in collider physics, neutrino physics, 
cosmology, early universe physics, quantum gravity etc

• One example is a first principles calculation of scattering process, such as 
pp->X (LHC). Will focus on this in remainder of talk

2. This problem is exponentially difficult in energy of collider, but has been 
shown that can be done on quantum computer polynomial in the energy
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The S-matrix for a scattering process from an initial state  to a final 
state  can be computed using a lattice approach

qI
qF

ϕn1
ϕn2

ϕn3
ϕn4

l
L

L = N l

Turn into finite dimensional Hilbert space by discretizing both spatial directions 
and field values
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The S-matrix for a scattering process from an initial state  to a final 
state  can be computed using a lattice approach

qI
qF

Hilbert space has dimension

(nϕ)
Nd  # of digitized field values

 # of lattice points per dim
 # of dimensions

nϕ :
N :
d :

ϕn1
ϕn2

ϕn3
ϕn4

l
L

L = N l

Turn into finite dimensional Hilbert space by discretizing both spatial directions 
and field values

Situation more complicated 
for gauge theories
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Can use directly the time evolution between initial and final 
state 

⟨qF(T) |e−iH(2T)/ℏ |qI(−T)⟩

⟨qF |U |qI⟩ = [ ⋆ ⋆ ⋯ ⋆ ]
⋆ ⋆ ⋯ ⋆
⋆ ⋆ ⋯ ⋆…
⋆ ⋆ ⋯ ⋆

⋆
⋆
⋯
⋆
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Can use directly the time evolution between initial and final 
state 

⟨qF(T) |e−iH(2T)/ℏ |qI(−T)⟩

After discretization, states are vectors in the finite dimensional Hilbert space, 
while Hamiltonian is a matrix

Quantum computers can do this calculation with resources (number of 
qubits and number of operations) that scale logarithmically in the size of 

Hilbert space

⟨qF |U |qI⟩ = [ ⋆ ⋆ ⋯ ⋆ ]
⋆ ⋆ ⋯ ⋆
⋆ ⋆ ⋯ ⋆…
⋆ ⋆ ⋯ ⋆

⋆
⋆
⋯
⋆
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The size of the lattice is determined by the energy range 
we try to simulate

Energy rage that can be 
described by lattice is given by

1
Nl

≲ E ≲
1
l

Assume we want to compute 
scattering at 100 GeV collider

100 MeV ≲ E ≲ 100 GeV

This needs  lattice sites𝒪(1,0003) ∼ 109

Assume I need at least 5 bit digitization ⇒ nϕ = 25 = 32

Dimension of Hilbert space is 
32109 ∼ ∞

Number of qubits and required
5 × 109
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Less resources required to address only the most difficult 
aspect of the problem: non-perturbative quantities

Assume we only want to compute low energy quantity

100 MeV ≲ E ≲ 2 GeV

This needs  lattice sites𝒪(203) ∼ 104

Number of qubits and required
5 × 104

Groundbreaking questions can be addressed with “reasonable” resource 
requirements
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Given this important result, the important work now is to 
work out details and compare different approaches

1. Theoretical foundations to formulate QFT calculations such that they are 
accessible to quantum computer

2. Development of efficient algorithms that allow to run required calculations 
using resources optimally

3. Understand how to optimize hardware for the physics problems at hand

Three main directions of research are required to fully develop this program
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Given this important result, the important work now is to 
work out details and compare different approaches

1. Theoretical foundations to formulate QFT calculations such that they are 
accessible to quantum computer

2. Development of efficient algorithms that allow to run required calculations 
using resources optimally

3. Understand how to run these algorithms on actual quantum hardware

Three main directions of research are required to fully develop this program
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• What are the DOF that should be used to describe fields?


• How should one digitize the fields


• How to deal with gauge redundancy? 


• How to ensure that Lattice theory is in same universality class as 
continuum theory?


• What is the RGE of the Lattice theory?


• How does one take the continuum limit?


• …

Lattice formulation of the Hamiltonian of gauge theories 
requires careful considerations
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• How do we create an Eigenstate of the interacting theory?

• variational techniques

• create ground state and excite wave packets

• …


• How do we exponentiate the Hamiltonian?

• Suzuki-Trotter approximations

• Algebraic techniques (Qubitization)

• …


• How do we measure final states?

• Run initial state creation backwards

• use phase estimation

• …

How do we use the lattice theory to compute the S-matrix 
for a scattering process?
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• Repeat all above steps for problems in other fields of HEP (neutrino, 
cosmology, …)


• Think about alternative strategies, such as analog quantum simulations


• Can we contribute to broader questions in Quantum Computing (general 
QIS questons, such as entanglement, noise mitigation, software 
development, general algorithmic techniques)


• Find similarities of problems in HEP with other fields, such as NP, 
chemistry, …


• … 

Many other questions that are important to answer, which I 
don’t have time to go into more detail
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• There are several “killer applications” that would revolutionize our 
approach to HEP


• Need to spend resources to fully investigate feasibility and find best 
approaches


• Very young field, and most of the interesting questions are still looking for 
answers


• Questions range from fundamental QFT questions to detailed 
implementation approaches

Quantum Computing is a field that needs to be fully 
explored in the next decade and beyond

HEP Theory and especially young scientists can have a major impact in this 
newly emerging field


